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Stability of toroid and rodlike globular structures of a single stiff-chain macromolecule
for different bending potentials
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We study the effect of the bending potential on the stability of toroidal and rodlike globules which are typical
collapsed conformations of a single stiff-chain macromolecule. We perform numerical calculations in the
framework of the bead-stick model of a polymer chain. The intrinsic structure of globules is also analyzed. It
was shown that the bending potential affects the packing geometry of bundles in a toroidal globule in the
ground state. This potential also influences the bends at the ends of a rodlike globule: both the shape of the
loops and the number of bonds in each loop have been investigated numerically as well as by Monte Carlo
computer simulations performed for a separate loop. Our main results are �1� the shape of the bending potential
could be possibly seen from the geometry of a globule; �2� toroidal globules are always more favorable than
the rodlike ones.

DOI: 10.1103/PhysRevE.73.051804 PACS number�s�: 82.35.Jk, 82.20.Wt., 82.35.Pq
I. INTRODUCTION

It is well known that many biological macromolecules are
globules in their native state, and at the same time many of
them, e.g., DNA, can have rather large internal stiffness
�1,2�. Controlling DNA condensation is presently of much
interest for the development of nonviral approaches to gene
therapy �3�. Due to these facts, the ability of a single stiff-
chain macromolecule to form different nontrivial globular
structures draws a significant attention.

Experimental, theoretical, and computer simulation meth-
ods have been widely applied for investigation of stiff-chain
polymers. In the experiments several different globular
shapes of semiflexible macromolecules have been observed
�4–13�, including toroidal and rodlike globules. Theoreti-
cally, the formation of the so-called small globules by the
chains of finite length has been considered more than two
decades ago �14�. Different shapes �toroids, cylinders� were
predicted depending on the mechanism of flexibility assumed
in the model and on the strength of the stiffness potential, as
well as monomer-monomer interaction potential �14–25�.
The effect of electrostatic interactions �which play an impor-
tant role in the systems studied experimentally� on the for-
mation of toroidal structures was also calculated �17�.
In computer simulation special attention was paid to the
conformational behavior of stiff-chain macromolecules
�10,26–39�. To sample reasonably large amount of confor-
mations of a single long chain it is necessary to use coarse-
grained models, i.e., to consider a chain consisting of mono-
mer units where each unit represents several atoms of a real
macromolecule.

In the computer simulation of semiflexible macromol-
ecules a very crucial point is the selection of an appropriate
simulation model which includes the choice of bending po-
tential. In this study we use the bead-stick model �40� where
the polymer chain is represented as a sequence of beads con-

nected by bonds of fixed length. Most theories use the bend-
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ing potential proportional to �2 �� is the angle between two
successive bonds along the chain�. At the same time, in the
computer simulation the typical bending potential is U��1
−cos �. It is often chosen because of numerical simplicity �it
is calculated as the scalar product of bond vectors along the
chain� and because it is proportional to �2 for small angles.
However, this cos � potential is much “softer” for large
angles between successive bonds in comparison to �2 poten-
tial.

In real polymers the bending potential can have a more
complicated form, and the problem of a correct definition of
a potential is especially significant for biological systems. In
fact, there have been some experimental indications in the
biological literature that suggest a “high-curvature softening”
for DNA �41�, and corresponding theoretical models have
been also proposed, e.g., kinkable wormlike chain model
�42�. Actually, this “softening” can be described by the cos �
potential considered in the present paper.

It is well known that the phase diagram of model systems
depends strongly on the potential used, and, therefore, the
understanding of the influence of a particular potential on the
appearance of different structures �phases� is important for a
comparison with experimental phase diagrams. In this paper
we address the issue whether it is possible to use a bending
potential of a simple functional form to reproduce wide va-
riety of compact globular structures of stiff-chain polymers
observed experimentally. Therefore, here we intentionally
consider only bending potential and do not include electro-
static interactions. Another very important question is
whether it is possible to extract the form of the bending
potential from experimental data, e.g., from observed confor-
mations.

The paper is organized as follows. In Sec. II we describe
our model. Section III contains our results for conforma-
tional properties of toroidal and rodlike globules for two dif-
ferent bending potentials. Our conclusions are summarized

in Sec. IV.
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II. MODEL

In our study we use the following model of a polymer
chain. A N-mer macromolecule is represented by a sequence
of N hard spheres of radius a connected by bond vectors of
fixed length 2a. The angle � between successive bond vec-
tors can take a value between 0 and 2� /3.

To describe stiffness we introduce a bending potential U�

which depends on the angle �. Two different bending poten-
tials have been considered,

U�
�1� = f1�1 − cos �� �1�

and

U�
�2� = f2�2. �2�

The following notation is used below in this paper for the
stiffness parameter p:

p = � f1, U� = f1�1 − cos �� ,

2f2, U� = f2�2.
�3�

In a coil conformation where all angles are small, for the
case f1=2f2, the behavior of chains with both bending po-
tentials would be almost the same, since their persistence
lengths would be equal. But for collapsed globule conforma-
tions, where large bending angles exist and an approximation
cos ��1−�2 /2 cannot be used anymore, a difference in the
conformational behavior, based on the type of chosen bend-
ing potential, appears. This difference can lead to the fact
that for different bending potentials different condensed
globular structures are stable. In this paper we focus on an
interplay between toroids and rodlike structures as two pos-
sible nontrivial globular states of a stiff-chain macromol-
ecule.

The volume interaction between monomer units of the
chain is taken into account by means of estimation of a sur-
face energy of the globule Esurf. For this purpose we intro-
duce a surface tension parameter �, which characterizes a
penalty per one exposed contact which have monomers at the
surface of the globule. Then the surface energy could be
calculated as the number of exposed contacts, nexp, multi-
plied by �,

Esurf = �nexp.

To confirm our numerical calculations of the shape of
loops in a rodlike globule we perform Monte Carlo simula-
tions, however, only for a part of the chain, namely, for one
separated loop. In our computer simulations we use the off-
lattice bead-stick model which is very similar to the model
used in numerical studies. In order to describe the interaction
of nonbonded monomer units separated by the distance r we
have chosen the following potential:

UNB = �� , r � 2a ,

− 2� , 2a � r � 2a + �r ,

0, r � 2a + �r ,

�4�

where a is the radius of one monomer unit �2a is equal to
one unit length� and the parameter �r was chosen to be equal

to �r=0.01. We have also performed simulations at the val-
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ues �r=0.02 and 0.005, and we have found that the choice of
this parameter does not influence the equilibrium shape of
the loop. The bending potential between two successive bond
vectors along the chain is given by Eq. �1� or by Eq. �2�. We
have performed simulation at the following values of param-
eters: stiffness parameter p=250, parameter � was varied
from 5 up to 50, so the ratio � / p was varied from 0.02 to 0.2.

In our simulation the temperature was equal to kBT=0.3
because we were interested in finding the ground state, and
therefore wanted to diminish the effects of entropy in the
simulation. With our parameters, the contribution of thermal
fluctuations is negligibly small.

In each Monte Carlo step, two monomer units are chosen
at random and the whole part of the chain between them is
rotated arbitrarily around the connecting axis. For this trial
conformation it is checked whether the excluded volume
condition is fulfilled, and afterwards this trial step is ac-
cepted with the usual Metropolis rate. This kind of Monte
Carlo steps ensures that the length of each bond along the
chain remains constant during the simulation and thus the
requirement of the bead-stick model is fulfilled.

III. RESULTS AND DISCUSSION

A. Toroidal globule

The first nontrivial globular structure which we consider
is a toroidal globule. It is characterized by its radius R and
radius of its cross section r �see Fig. 1�a��. In our calculations
we suppose R�r �the case of an ideal toroid, later we will
check the validity of such an approximation�. It means that
we consider the bending angle between adjacent bonds to be
constant along the chain �� 2a

R �see Fig. 1�b�� �more pre-
cisely, angle values are distributed in the interval 2a

�R−r� ��

�
2a

�R+r� and depend on the location of the particular filament

in the bundle�.
Toroids or other collapsed structures of stiff-chain macro-

molecules are formed due to the interplay between the bend-
ing energy E� and the surface energy Esurf, and correspond to
the minimum of the total energy Etotal=E�+Esurf.

In the limit R�r the bending energy of a toroidal globule
E�

tor is

E�
tor = �N − 1�U�	2a

R

 . �5�

Here U�� 2a
R

� is a value of a bending potential which corre-
sponds to the angle 2a

R .
To estimate the surface energy Esurf we must calculate the

number of exposed contacts for a particular globular confor-

FIG. 1. A toroidal globule with the hexagonal packing of cir-
cuits �a�. Bending angles inside a circuit �b�.
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mation, nexp. This number of course depends on the packing
of monomers in the globule. As it was pointed out by Ubbink
and Odijk �17�, the packing of filaments in the toroidal
bundle can be considered to be a hexagonal, which is the
limit of a toroidal crystal and is observed for condensed
structures �43�. Let us introduce now the parameter A�n�—the
number of exposed contacts per one slice of toroid’s cross
section of the width equal to the size of one monomer unit
�length is measured in monomer diameters 2a� for a bundle
of n filaments with hexagonal packing �24�:

A�n� = 12W�n� − 6 + 2�1 − �C�n�,0
� + 2J	 C�n�

W�n�

 ,

where W�n�=J� 3+�12n−3
6

�, C�n�=n−3W�n�
2 +3W�n�−1, J�x� is

the largest integer not greater than x and �ij—Kroneker delta.
In the general case the number of circuits in a toroid can

be characterized by a noninteger number ñ in the following
way: ñ−n part of a toroid consists of n+1 circuits while the
rest part consists of n circuits �0� ñ−n�1�. Consequently,
the surface energy of the toroidal globule Esurf

tor can be written
as

Esurf
tor =

�

2a
�2�R�ñ − n�A�n+1� + 2�R�1 − �ñ − n��A�n�
 . �6�

Since 2�Rñ=2Na, Eq. �6� can be rewritten as

Esurf
tor = N�	 �ñ − n�

ñ
A�n+1� +

�1 − �ñ − n��
ñ

A�n�
 . �7�

And the total energy of the toroidal globule is

FIG. 2. Surface energy per monomer unit as a function of num-
ber of filaments in a bundle with hexagonal packing.

TABLE I. “Magic” numbers of filaments which c
energy �see Eq. �8��. Numbers printed in boldface t

n 7 10 12 14 16

A�n� 18 22 24 26 28

n 40 44 48 52 56

A�n� 44 46 48 50 52
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Etotal
tor = E�

tor + Esurf
tor = �N − 1�U�	2�ñ

N



+ N�	 �ñ − n�
ñ

A�n+1� +
�1 − �ñ − n��

ñ
A�n�
 . �8�

As it was shown in Ref. �24� only toroidal globules com-
prised of particular number of circuits are stable. This effect
comes from the fact that the surface energy of the toroidal
globule �see Eq. �7�� considered as a function of ñ has local
minima, which, for n�5, correspond to toroidal globules
with integer number of circuits �ñ=n� �see Fig. 2�. The sur-
face energy function has singular points in these minima.
Since the bending energy is a monotonic function of ñ, the
total energy of a toroidal globule Etotal

tor has singular points
exactly at the same values of ñ as the surface energy Esurf

tor .
One of these singular points becomes a global minimum for
the total energy �because the main term in the surface energy
is ñ−1 while the bending energy increases proportionally to
n2�.

These “magic” numbers of filaments, which correspond to
the local minima of the surface energy, and corresponding
A�n� for the number of filaments up to the first five complete
hexagonal shells are presented in Table I. �Complete shells
contain 7, 19, 37, 61, 91 circuits, respectively, and are
marked in boldface type in Table I�.

Figure 3 shows maps in chain length—stiffness coordi-
nates for different values of parameter �. The chain length is
measured in number of monomers in the chain N, and the
stiffness is determined by the parameter p �Eq. �3��. Different
colors show how many circuits have the toroidal conforma-
tion with the lowest energy. This number of circuits corre-
sponds to the minimum of the total energy �Eq. �8�� for a
chain with particular N and p at a given value of �. These
maps were built for chains with both bending potentials:
U���1−cos �� and U���2, but in Fig. 3 we present only
the pictures for U���1−cos ��. The reason is that the maps
for both bending potentials are almost undistinguishable.

White color in Fig. 3 marks the area where toroidal struc-
ture cannot exist. What does it mean? It is evident that we
cannot talk about any “toroidality” for a structure with r
�R �see Fig. 1�. This criterion can be written as

N � �ñ�ñ .

Here we take into account that for an ideal toroid R= Na
�ñ

and the radii of its cross section can be estimated as r
�a�ñ.

spond to the local minima of toroidal globule’s total
orrespond to complete shells.

21 24 27 30 33 37

32 34 36 38 40 42

65 70 75 80 85 91

56 58 60 62 64 66
orre
ype c

19

30

61

54
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As it can be seen from Fig. 3, the parameter � influences
the map significantly. Nevertheless, as it was shown by
Pereira and Williams �24�, if the number of filaments in the
equilibrated toroidal structure is considered as a function of a
renormalized chain length N�N��

p , the corresponding de-
pendence ñ�N� is uniform for all �.

A comparison of these dependencies for toroids with
bending potentials U���1−cos �� and U���2 confirms
that, in the approximation of an ideal toroid, the influence of
the type of the bending potential is negligible and can be
seen only for large N �Fig. 4�.

B. Nonideal toroids

In the preceding section we have analyzed the stability of
toroidal structures in the approximation of an ideal toroid. In
the current section we explore how correct this approxima-
tion is and how significant would be the changes if we take
into account some nonideal effects in bending energy since
in a real toroidal globule different filaments have different
curvature radii. For simplicity we consider toroids with the
number of circuits equal to 7, 19, 37, and 61. These numbers
of filaments correspond to the cases of filled first, second,
third, and fourth hexagonal shell, respectively �see Fig. 5�.

Since now we do not consider all the circuits to be of
similar radius R, the bending energy of the globule can no

FIG. 3. �Color online� The maps of stability of toroidal struc-
tures in coordinates of the chain length—stiffness for the stiffness
potential U���1−cos ��, �=1.0 �a� and 2.0 �b�. Colors indicate
the number of filaments in the toroid which is stable at given values
of parameters.
longer be expressed by Eq. �5�.
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Let us estimate the bending energy for a nonideal toroidal
structure. The bundle with hexagonal order of filaments can
orient in respect to axis of toroid in many different ways, but
there are two limiting cases �see Figs. 5�a� and 5�b��, which
we have analyzed �all other orientations are intermediate be-
tween these two�.

Let us introduce the following notation: nk—the number
of filaments in a toroid composed of k filled hexagonal shells
�k=1↔nk=7; k=2↔nk=19; k=3↔nk=37; k=4↔nk=61�.
Then for the case �a� �see Fig. 5� the bending energy of a
nonideal toroidal globule of nk filaments can be written as

E�
�nk� = 	 �2k + 1�N

nk
− 1
U�	2�nk

N



+ �
j=1

k

�2k + 1 − j�	 N

nk
± j��3
U�	 2�nk

N ± j�nk
�3

 .

�9�

And for the case �b� �see Fig. 5�,

FIG. 4. �Color online� Number of circuits in a toroid ñ vs renor-
malized chain length N for bending potentials: U���1−cos �� and
U���2.

FIG. 5. �Color online� Two different orientations of the hexago-
nal bundle in the toroidal globule. �Orientation of hexagonal bundle
differs for 30°. Different colors correspond to different hexagonal

shells.�
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E�
�nk� = ��2J	 k

2

 + 1�N

nk
− 1�U�	2�nk

N



+ �
j=1

k

j	 N

nk
± �2k + 1 − j��
U�	 2�nk

N ± �2k + 1 − j��nk



+ �
j=1

k �2k − 2J	 k

2

 + �− � j,2J�j/2��1+�k,2J�k/2��

	 	 N

nk
± j�
U�	 2�nk

N ± j�nk

 , �10�

where J�x�, as before, is the largest integer not greater than
x.

It can be easily seen that the bending energy is different
for these two conformations. Moreover the case �a� is much
more favorable for a chain with the bending potential U�

��2 while the case �b� corresponds to the minimum of the
bending energy for a chain with U���1−cos ��. For both
potentials the difference in energy between toroidal struc-
tures with different packing of bundles becomes more pro-
nounced for thicker toroids. This observation is very impor-
tant. It indicates that the bending potential influences the
spatial arranging of filaments inside a globule.

We have analyzed the ratio E��nonid� /E��id� for 7-, 19-,
37-, and 61-circuit toroids, where E��id� is the bending en-
ergy of an ideal toroid �calculated according to Eq. �5��, and
E��nonid� is the bending energy of nonideal ones �Eqs. �9�
for U���2 and �10� for U���1−cos ��, respectively�. It
was found that the total energy calculated for a nonideal
toroid is always larger than that for an ideal toroidal struc-
ture. The ratio E��nonid� /E��id� becomes larger with the
increase in the number of filaments in the toroidal globule,
and for relatively “thick” toroids it exceeds 1.1. The type of
bending potential plays very important role as well. In Fig. 6
we present the ratio E��nonid� /E��id� for �=1.0, which il-
lustrates very well that nonideal effects are much more pro-
nounced for the case of bending potential U���2 than for
U���1−cos ��.

We remark that although it is known that for some values
of surface tension and stiffness the most favorable is a state
of “twisted” toroid, where individual filaments lower their
bending energy by additionally orbiting around the mean
path along which they wind �44�, these structures cannot be
observed in most real experiments because of the kinetic
reasons. There are also experimental evidences and theoreti-
cal models for other types of filament packing in toroids,
e.g., circumferential wrapping �45,46�. In our study we do
not take into account the above-mentioned effects as well as
any other possible defects, e.g., quenched or inevitable struc-
tural defects caused by chain connectivity �47�, and consider
only nontwisted toroidal structures with coplanar concentric
loops.

C. Rodlike globule

The second type of a condensed structure which can be

formed by a stiff-chain macromolecule is a rodlike globule.
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An example of a perfectly ordered rodlike structure is shown
in Fig. 7. Here we still assume that in a 3D space the hex-
agonal packing is the most favorable one. In our study we
consider rodlike globules consisting of several filaments of
the same length, H, and one filament of a length equal to or
less than H. �We simplify the picture. In principle, the glob-
ule can have two filaments with the length less than H, but,
as can be easily seen, the surface energy of such a structure
is higher while the bending energy is the same as in the case
of one shortened filament. This means that such a conforma-
tion should be unfavorable.�

In the standard bead-stick chain model, rodlike structures
can be formed with loops at the ends �such structures were
called “racquets” in Ref. �39�� or without them. We first ana-
lyze the formation of the bends. It is obvious that the bend-
ing on 180 degrees can be performed by different ways and a
different number of monomers can be involved in this pro-
cess. Let us consider some of these bends to find which of
them correspond to the equilibrium states for both bending
potentials �U���1−cos �� and U���2�. For this purpose
we considered a single filament and study the shape of the
loop between points A and B which separate the bend from

FIG. 6. �Color online� The maps of ratio E��nonid� /E��id� for
toroids of 7, 19, 37, 61 filaments in variables of the chain length—
stiffness for bending potentials U���1−cos �� �a� and U���2

�b�, in both cases �=1.0.
FIG. 7. “Perfect” rodlike globule.
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the perfectly ordered part of the rod �see Fig. 8�. We varied
the number of bonds between points A and B from 3 to 12
�which means that the considered bends are formed by m
monomers, 4�m�13�. Corresponding bending energies and

FIG. 8. A bend of a chain in a rodlike globular state.

TABLE II. Equilibrium shapes �for definition of angles 
 ,�1 , . . .
consisted of m monomers. Data for U��1−cos �� potential are sho
Two methods have been used—numerical minimization �NM� and
Values for E� are given in energetic units, the values for angles are

m 4 5 6 7

method NM/MC NM/MC NM/MC NM/MC

E� 2.000/2.001
5.209/5.213

1.893/1.895
4.720/4.726

1.840/1.844
4.276/4.286

1.729/1.735
3.877/3.889


 0.0/1.3
−15.0/−14.9

−11.8/−12.0
−2.3/−2.3

6.5/6.6
6.5/6.6

6.5/6.5
10.5/10.5

�1 120.0/119.4
105.0/105.1

48.9/48.7
65.0/65.1

24.5/24.9
39.4/39.4

20.4/20.6
24.2/23.9

�2 60.0/60.6
75.0/74.9

117.1/117.2
96.3/96.3

100.8/100.4
82.2/82.2

53.8/53.4
60.3/60.6

�3 16.6/16.7
38.6/38.6

58.2/58.5
68.2/68.3

90.4/90.9
74.6/74.7

�4 18.1/18.0
21.0/20.9

34.9/34.7
46.1/46.0

�5 6.5/6.3
10.0/9.9

�6

�7

�8

�9

�10

� 0.0/1.3
15.0/14.9

14.4/14.5
22.2/22.2

15.0/15.1
24.3/24.2

19.5/19.3
24.7/24.4

� �
p

�* 0
0.0685

0.0269
0.0954

0.0267
0.1006

0.0338
0.1004
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the equilibrium shapes of the bends are shown in Table II.
The values and shapes in Table II were obtained by nu-

merical minimization of the bending energy E�:

E� = U��
� + �
i=1

m−2

U���i� + U���� , �11�

taking into account the following constraints:


 − �i=1

m−2
�i + � = − 180 ° ,

AB = 2a, Ax − Bx = a ,

where m is the number of monomers which form the bend
�between points A and B�.

,� see Fig. 8� and corresponding bending energies, E�, of the bends
n normal style while those for U��2 potential are shown in italic.
te Carlo simulations �MC�. For a definition of �� / p�* see the text.
en in degrees �not in radians�.

8 9 10 11 12

M/MC NM/MC NM/MC NM/MC NM/MC

23/1.631
36/3.553

1.515/1.525
3.243/3.262

1.415/1.427
2.991/3.014

1.325/1.334
2.774/2.800

1.243/1.256
2.584/2.611

.9/12.0

.8/13.4
12.2/12.1
13.9/13.8

13.1/13.0
14.4/14.4

13.5/12.4
14.6/14.6

13.7/13.3
14.5/14.7

.7/13.7

.4/14.4
7.0/7.0
8.1/8.2

3.2/3.6
3.7/3.9

0.5/2.3
0.7/2.6

−1.5/−1.3
−1.5/−2.7

.8/36.4

.2/43.9
27.7/27.7
30.9/30.8

20.1/20.6
22.2/22.5

14.6/13.7
16.0/16.4

10.5/8.6
11.4/11.2

.4/75.3

.8/65.5
53.0/53.2
53.0/53.0

39.8/39.3
41.5/41.6

30.5/28.7
32.2/32.3

23.6/24.1
25.0/25.4

.1/56.4

.9/58.4
66.6/66.4
60.3/60.4

58.6/58.8
54.6/54.7

47.4/47.5
46.4/46.2

38.0/39.2
38.3/38.0

.9/28.1

.3/31.9
41.6/41.7
44.6/44.8

51.9/51.6
50.7/49.9

53.7/56.7
50.5/50.3

48.8/48.7
46.5/47.0

.8/3.8

.3/3.0
18.4/18.4
21.3/21.2

31.1/31.1
33.5/33.7

40.4/41.2
41.1/41.4

45.3/43.8
44.1/44.1

−1.1/−2.4
−1.0/−2.6

12.7/13.2
14.3/15.1
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−3.6/−3.9
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8.4/8.1
9.4/9.3
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−5.4/−5.8
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5.3/4.8
5.9/5.7

−6.6/−5.9
−7.0/−7.1
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Each trivial bend �see Fig. 7� contributes the value
2.000f1 or 5.483f2 to the total energy for U�= f1�1−cos ��
and U�= f2�2, respectively. If the chain forms a bend of a
“nontrivial” form �as can be seen in Table II� it can decrease
its bending energy �note that for calculation of the energy in
Table II we used f1= f2=1�, but at the same time the number
of empty places for contacts becomes larger and the surface
energy increases. Until the loss in surface energy is larger
than the gain in bending energy the chain will form trivial
bends �as it is shown in Fig. 7�. The values of ratio �� / p�*,
below which the corresponding type of the bend is more
favorable than the trivial one, are shown in Table II.

We have compared our numerical results to the very simi-
lar analysis of so-called “racquets” made in Ref. �39� where
an analytical result for the harmonic potential was provided
and the elastica shape has been obtained �for the case of
infinitely thin chain�. As can be seen from Fig. 9 the shape of
the loop in our numerical calculations coincides rather well
with elastica.

To confirm the results of the numerical minimization we
have also performed Monte Carlo simulations. We have con-
sidered a simple rod with one bend �see Fig. 8�. To simulate
the existence of a perfectly ordered part of the rod near the
bend we fixed four monomer units �two at each end of the
chain, the fixed monomer units are filled with gray in Fig. 8�
and we did not consider the rest of the monomer units in the
straight part of the globule �where filaments are perfectly
ordered�. Though such a constraint looks a little artificial it is
suitable for the studied problem �determination of the shape
of the loop�. The number of bonds between points A and B in
the loop was varied from 3 to 12 and we have analyzed the
shape of the corresponding bend. The interaction potential
between nonbonded monomer units is given by Eq. �4�.

Starting from a random conformation �with four fixed
beads at the ends� we have performed in each simulation a
series of Monte Carlo steps, accepted or rejected according
to the Metropolis algorithm. As it was mentioned above in
each Monte Carlo update, two monomer units are chosen at
random �except the first and the last monomers at the ends�
and the part of the chain between them is rotated randomly
around the axis connecting them.

As can be seen from Table II results of the simulations
agree well with the numerical estimates. But not all the struc-
tures shown in Table II can be observed because some of
them do not correspond to the minimum of total energy at

FIG. 9. �Color online� Comparison of numerical solution with
elastica.
any �� / p�. Which type of the bend is the most favorable one
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at particular value of �� / p� is shown in Fig. 10. As can be
seen there is a significant difference between the chains with
bending potential U���1−cos �� and U���2. For the case
of U���2 the variety of possible bends which can be stable
is bigger, though for this case a trivial bend �m=0� becomes
unstable at higher values of � / p.

Here we consider perfect rods only, i.e., we consider our
chains in the area where � / p� �� / p�trivial, here �� / p�trivial is
the largest value of �� / p�* �see Table II�, �� / p�trivial

=0.0422 for U���1−cos �� and �� / p�trivial=0.1006 for U�

��2.
Since the number of filaments in the bundle, ñ, gives the

major influence on the surface energy, the “favorable” num-
bers of filaments for rod and toroid are the same �see Table I�
and depend on the packing structure only, which, as previ-
ously, is supposed to be hexagonal. As for toroidal globule
the total energy of rodlike globule Etotal

rod consists of two parts:
surface energy Esurf

rod and bending energy E�
rod. Since we con-

sider here only perfectly ordered rodlike globules �example
of such a structure can be seen in Fig. 7� then

Esurf
rod = N�	 �ñ − n�

ñ
A�n+1� +

�1 − �ñ − n��
ñ

A�n�
 + 2n�

�12�

and

E�
rod = n��U�	2�

3

 + U�	�

3

� , �13�

where

n� = �n − 1, ñ = n ,

n , otherwise.

�Definition of ñ is the same as for the toroidal globule
above.�

FIG. 10. �Color online� Structure of bends in a rodlike globule
for two bending potentials �U���1−cos �� and U���2�. The
dashed line at m=13 means that we did not consider bends with
m�13 and cannot say where this bend �m=13� becomes unstable.
The total energy for a rodlike structure is
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Etotal
rod = n��U�	2�

3

 + U�	�

3

�

+ N�	 �ñ − n�
ñ

A�n+1� +
�1 − �ñ − n��

ñ
A�n�
 + 2n� . �14�

As for toroidal globule for a rodlike one we should also
choose a criterion to distinguish it from an ellipsoidal glob-
ule. For such a criterion we choose the ratio of globule
length H to its diameter d. If H

d �3 we call such a structure
rodlike globule or rod. Otherwise we treat the structure as an
ellipsoidal globule and do not consider it in our study. In
terms of the number of monomers N and the number of
filaments in the rod ñ this criterion can be written in the
following form:

N

2ñ�ñ
� 3. �15�

In Figures 11 and 12 we present the maps of stability of
perfect rodlike structures in variables of the chain length—
stiffness, N− p. As for the case of toroidal globule �see Fig.
3� by color we indicate the number of filaments in the most
favorable perfect rodlike globule for particular chain length

FIG. 11. �Color online� The maps of stability of perfect rodlike
structures �with trivial bends� in variables of the chain length—
stiffness for stiffness potential U���1−cos ��, �=1.0 �a�, �=2.0
�b�. The color indicates the number of filaments in the most favor-
able in terms of total energy rodlike globular structure.
N, stiffness p, and surface tension �. The upper limit in the

051804
stiffness parameter p is defined by the criterion � / p
� �� / p�trivial described above.

It can be easily seen that in the case of rodlike structures
in comparison to the case of toroids the maps built for U�

��1−cos �� and for U���2 differ from each other. This is
due to the fact that rodlike structures have sharp kinks in the
chain direction. For bending on such angles the approxima-
tion cos ��1− �2

2 is not valid, which leads to the pro-
nounced difference in bending energy.

D. Comparison of stability of toroidal and rodlike globules

In this section we try to understand how the choice of a
bending potential influences the volume fraction of toroidal
and rodlike globules in the condensed state. We compare
properties and energies of the most favorable toroid and rod
�i.e., toroid and rod with smallest value of energy� for each
particular chain length N and stiffness parameter p for both
types of bending potentials: U�= f1�1−cos �� and U�= f2�2.

Taking into account that the ratio of probabilities to get a
rodlike or a toroidal conformation,

�rod

�tor
, is proportional to

exp�−Etotal
rod −Etotal

tor /kT�, we present maps not for energies
themselves but rather for the difference Etotal

rod −Etotal
tor for both

bending potentials for the case of ideal toroid and perfect

FIG. 12. �Color online� The maps of stability of perfect rodlike
structures �with trivial bends� in variables of the chain length—
stiffness for stiffness potential U���2, �=1.0 �a�, �=2.0 �b�. The
color indicates the number of filaments in the most favorable in
terms of total energy rodlike globular structure.
rod. As can be seen from Fig. 13 in the whole range of

-8



STABILITY OF TOROID AND RODLIKE GLOBULAR¼ PHYSICAL REVIEW E 73, 051804 �2006�
parameters toroidal structure has lower energy than the cor-
responding rodlike one. This means that toroids are stable
structures while rodlike globules are metastable ones. In
terms of Monte Carlo simulation it means that the volume
fraction of toroids is always larger than volume fraction of
rodlike globules. Though the comparison has been performed
for the case of ideal toroid and perfect rodlike globule the
deviation due to nonideality of the structures cannot compen-
sate the energy difference between the structures. We have
calculated the difference in bending energy between perfect
rod and nonideal toroid for toroids of 7, 19, 37, 61 circuits
and found the trend to be the same as for the previous case.

IV. CONCLUSIONS

In this paper we have analyzed theoretically and numeri-
cally how the geometry of compact globular structures de-

FIG. 13. �Color online� The maps of the difference in total en-
ergy between perfect rod and ideal toroid Etotal

rod �id�−Etotal
tor �id�. Bend-

ing potentials are U���1−cos �� for the figure at the top and U�

��2 for the figure at the bottom, �=1.0. Colors indicate the nu-
merical values of the energy difference in kT.
pends on the bending potential. It is well known that small

�5� N. V. Hud, M. J. Allen, K. H. Downing, J. Lee, and R. Bal-
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globules formed by a semiflexible chain of finite length can
take shapes of a torus, cylinder �rod�, etc. Here, we have
investigated two different globular structures, toroidal glob-
ule and rodlike one, for two different bending potentials:
U���1−cos �� and U���2. It has been shown that in the
framework of the bead-stick model the number of filaments
in toroidal and rodlike globules is a discrete function of the
chain length and the stiffness. In order to understand this
observation better we have built two-dimensional �2D� maps
of stability for toroids and rods for both bending potentials.
These maps show the number of filament in the toroidal or
rodlike globule, respectively, which has the lowest energy at
given values of chain length and stiffness.

We can conclude that the type of the bending potential
influences both globular states. For the case of toroidal glob-
ule the type of the bending potential could be possibly rec-
ognized from the packing geometry of the filaments in toroid
since the two potentials prefer different ground states �see
Fig. 5�. The difference in energy between two possible
ground states becomes more pronounced with increasing the
thickness of a toroid. For rodlike globules the shape of the
bends does also depend very significantly on the particular
bending potential �see Fig. 10�. Namely, there are some val-
ues of the bend lengths which can be observed for the �2

potential only while they are not stable for the cos � poten-
tial. Decreasing the ratio of the surface tension and the stiff-
ness parameter, � / p, one would observe for �2 potential
many possible intermediate shapes of loops consisting of a
different number of beads, while there would be only a
trivial bend followed by a sharp jump to a quite large loop of
11 beads for the cos � potential.

In order to understand which of these two structures �tor-
oids or rodlike globules� is the stable one we have calculated
the difference between energies Etotal

rod −Etotal
tor for U���1

−cos �� and U���2. For all parameters considered here tor-
oids were found to be the most favorable structure, while
numerically its preference depends on the bending potential.

Summarizing, our main results are �1� the shape of the
bending potential could be possibly seen from the geometry
of a globule; �2� toroidal globules are always more favorable
than the rodlike ones.
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